Se hai scelto di non accettare i cookie di profilazione e tracciamento, puoi aderire all’abbonamento "Consentless" a un costo molto accessibile, oppure scegliere un altro abbonamento per accedere ad ANSA.it.

Ti invitiamo a leggere le Condizioni Generali di Servizio, la Cookie Policy e l'Informativa Privacy.

Puoi leggere tutti i titoli di ANSA.it
e 10 contenuti ogni 30 giorni
a €16,99/anno

  • Servizio equivalente a quello accessibile prestando il consenso ai cookie di profilazione pubblicitaria e tracciamento
  • Durata annuale (senza rinnovo automatico)
  • Un pop-up ti avvertirà che hai raggiunto i contenuti consentiti in 30 giorni (potrai continuare a vedere tutti i titoli del sito, ma per aprire altri contenuti dovrai attendere il successivo periodo di 30 giorni)
  • Pubblicità presente ma non profilata o gestibile mediante il pannello delle preferenze
  • Iscrizione alle Newsletter tematiche curate dalle redazioni ANSA.


Per accedere senza limiti a tutti i contenuti di ANSA.it

Scegli il piano di abbonamento più adatto alle tue esigenze.

From aircraft to the Sun, turbulence as it has never been seen before

From aircraft to the Sun, turbulence as it has never been seen before

Researchers reconstruct dynamics using light

28 giugno 2023, 09:54

Redazione ANSA

ANSACheck

Turbulent motion in a quantum fluid (Credit: Cnr) - RIPRODUZIONE RISERVATA

Turbulent motion in a quantum fluid (Credit: Cnr) - RIPRODUZIONE RISERVATA
Turbulent motion in a quantum fluid (Credit: Cnr) - RIPRODUZIONE RISERVATA

Scientists have for the first time created turbulent motion in a fluid of light, ushering in a new field of research that uses photonics to study turbulence with unprecedented precision, describing processes ranging from aircraft aerodynamics to arterial blood flow, from the study of the Earth's magnetic field to solar corona eruptions.

The findings are published in Nature Photonics by the Advanced Photonics Group of the National Research Council’s Institute of Nanotechnology in Lecce, Italy, in collaboration with theoretical groups from the Institute of Physics at the Polish Academy of Sciences and University College London.

"Although turbulent motion is governed by equations that are well known in physics, the difficulty of the problem lies in the nonlinearity of these equations with respect to fluid velocity and the wide range of spatial scales involved: these two elements make it difficult to simulate turbulent dynamics numerically, even using the very powerful computers available today," says Dario Ballarini of CNR-Nanotec.

"The novelty of our study lies in having investigated turbulence from a new point of view, studying the phenomenon in a new system, quantum light fluids. In order to create a quantum fluid of light, the coherence properties of light must be combined with the strong interactions typical of matter, and to do this we need to hybridize light particles (photons) with electrons."

In particular, the CNR researchers observed the inverse energy cascade, where large vortices form from smaller vortices and create large stable structures over time, instead of gradually dividing into smaller vortices down to microscopic spatial scales where energy is dissipated into heat.

Riproduzione riservata © Copyright ANSA

Da non perdere

Condividi

O utilizza